CANCER AND THE HEALTHY IMMIGRANT EFFECT: PRELIMINARY ANALYSIS USING THE CENSUS COHORT

Ted McDonald, Mike Farnworth, Zikuan Liu
Department of Economics
University of New Brunswick

CRDCN conference – October 3, 2013
Background

- Cancer is the leading cause of death in Canada, with on average 21 new cases diagnosed every hour. About one in four Canadians will die from the disease.

- Davis, Donovan, and Herberman (2007) estimate that less than 10% of cancers are the result of a mutation in, or the operation of, a particular gene. The rest are related to individual behaviors, environment, and the interaction of genes and these dimensions.

- There has been a huge volume of research conducted on the contextual determinants of cancer:
 - Demographic: age, sex, race, immigrant status, marital status
 - Socioeconomic: education, household and personal income, occupation, employment status, poverty
 - Geographic: urban/rural, neighborhood effects, environment, access to services
 - Health behaviors: smoking, diet, alcohol
Data sources for cancer research

• Previous work has used a variety of data sources and each type of data has strengths and limitations

• Case control studies such as chart reviews
 • Small samples, often non-random selection

• Survey data such as CCHS (Canada) and NHIS (US)
 • Self reported
 • Cross-sectional
 • Small numbers of cancers even in large surveys
 • Prevalence rather than incidence
• Administrative cancer registry data such as CCR (Canada) and SEER (US)
 • Gold standard for data on cancer incidence
 • Only basic demographic information is reported – sex, age, place of residence, and race/ethnicity in the US
 • No information on the broader at-risk population, which must come from area level population data from other data sources
 • No data on individual socioeconomic status – area level data such as income quintile from the Census or other data source must be linked via patient postal code
 • Place of residence is as of the date of diagnosis
• Linked administrative/survey datasets

• US SEER-National Longitudinal Mortality Study linked dataset that includes individual data on socioeconomic status.
 • Clegg et.al. (2009): Lower cancer incidence rates with higher education levels for men; for women, cancer incidence rates were lower for university degree holders than other education levels

• Canadian IMDB-CCR-CMD immigrant linked dataset
 • McDermott et.al (2011): immigrants from most regions of birth have lower standardized incidence rates for most forms of cancer
 • No native-born, immigrants who arrived 1980-98 only, no socioeconomic information
The 1991 Canadian Census Cohort

• A new dataset assembled by Statistics Canada is now available through a pilot program in the Canadian RDC network

• It is based on individuals aged 25+ who completed the 20% long form of the 1991 Census of Canada, linked to:
 • Canadian Cancer registry from 1984-2003 [2008 next year]
 • Canadian Mortality database from 1991- 2006 [2008 next year]
 • Tax file data on location of residence and marital status 1986-2008

• Individual level data are linked using probabilistic linkage methods (Peters et.al, Int.J. Epid, 2013)
Information in the dataset

• From the Census we can observe:
 • Educational attainment, field of study as of 1991
 • Personal and household income from different sources as of 1991
 • Occupation as of 1991
 • Immigrant status, country of birth, year of arrival, age at arrival
 • Visible minority status, aboriginal status
 • Mother tongue and language proficiency as of 1991
• From the CCR we can observe:
 • Date of diagnosis of cancer
 • Cancer site(s)

• From the CMD we can observe:
 • Date of death
 • Cause of death

• From the tax file information we can observe:
 • Six digit postal code of residence for *each* year in which a tax return was filed from 1986-2008

• 2.7 million individuals could be linked to at least one tax return, including ~500,000 immigrants. 247,000 cases of cancer diagnosed in this cohort from 1991.
Limitations of this linked dataset

- Probabilistic linkage is incomplete (80% of records could be linked)
- Some people do not file income tax and so are lost to follow-up
- No information on health behaviors
- No update of socioeconomic information after 1991
- No information on individuals who were not in Canada as of the 1991 census date (newer immigrants, returning Canadian residents)
Preliminary Research Questions

• How does the likelihood of being diagnosed with cancer vary by immigrant status, year of arrival, and country of birth?

• => Is there evidence of a healthy immigrant effect for cancer?

• => Is such an advantage lost with time in Canada?

• Immigrants on average are better educated and much more likely to reside in larger urban areas
Methods

• Discrete time Logistic duration model
 • Time until diagnosis of cancer

 • Calendar years 1991-2003 as discrete intervals (so up to 13 person-years of observation per individual)

 • Dependent variable – (0/1) diagnosed with cancer in a given year, conditional on being in the sample during the year and not previously diagnosed with cancer

 • Censoring: death, no tax return filed, end of sample period

• Clustering of individual-specific error terms
• Sample: aged 25-79 in 1991 in the Census cohort and not previously diagnosed with cancer

• Flexible specification of year/age/birth cohort effects

• Time invariant: education level, visible minority status, immigrant status; country of birth, period of arrival in Canada for immigrants

• Other time-varying covariates: resides in a large city, years in Canada if an immigrant (interacted with period of arrival)
Descriptive Statistics – age/time paths by birth cohort

1a: Men Born in 1925 – failure rate
1b: Women Born in 1925 - failure rate
1c: Men Born in 1945 - failure rate
1d: Women Born in 1945 – failure rate
Full Duration model: odds ratios of selected covariates

<table>
<thead>
<tr>
<th>Category</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>p-val</td>
</tr>
<tr>
<td>Not a large city</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Large city (pop>500,000)</td>
<td>1.052</td>
<td>0.000</td>
</tr>
<tr>
<td>Less than secondary school</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Secondary school</td>
<td>0.950</td>
<td>0.000</td>
</tr>
<tr>
<td>Trades certificate or diploma</td>
<td>0.937</td>
<td>0.000</td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>0.859</td>
<td>0.000</td>
</tr>
<tr>
<td>Higher degree</td>
<td>0.817</td>
<td>0.000</td>
</tr>
<tr>
<td>Born in Canada, white</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Born in Canada, other race</td>
<td>0.870</td>
<td>0.000</td>
</tr>
<tr>
<td># individuals</td>
<td>1.23m</td>
<td></td>
</tr>
<tr>
<td># observations</td>
<td>14.3m</td>
<td></td>
</tr>
<tr>
<td>Pseudo-Rsq</td>
<td>0.117</td>
<td></td>
</tr>
</tbody>
</table>
Odds ratios - region of birth

<table>
<thead>
<tr>
<th></th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR p-val</td>
<td>OR p-val</td>
</tr>
<tr>
<td>Born in UK/Ireland/Aus/NZ</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Born in the US</td>
<td>0.961 0.473</td>
<td>1.056 0.662</td>
</tr>
<tr>
<td>Born in Europe</td>
<td>0.905 0.052</td>
<td>0.849 0.002</td>
</tr>
<tr>
<td>Born in Western Asia/Mideast</td>
<td>0.693 0.000</td>
<td>0.783 0.004</td>
</tr>
<tr>
<td>Born in other Asian countries</td>
<td>0.628 0.000</td>
<td>0.709 0.000</td>
</tr>
<tr>
<td>Born elsewhere</td>
<td>0.839 0.001</td>
<td>0.771 0.000</td>
</tr>
</tbody>
</table>
Odds ratios – arrival cohort and ysm (UK born)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSM</td>
<td>1-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.768</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.926</td>
<td>0.937</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>1.104</td>
<td>1.077</td>
<td>1.002</td>
<td>1.005</td>
<td>0.986</td>
<td>0.945</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.906</td>
</tr>
<tr>
<td>11-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.956</td>
</tr>
<tr>
<td>21-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.944</td>
</tr>
<tr>
<td>31+</td>
<td>1.172</td>
<td>0.936</td>
<td>1.051</td>
<td>1.034</td>
<td>0.976</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Evidence of a healthy immigrant effect is found for cancer incidence among certain immigrants to Canada
 • The gap is widest for immigrants from East and South Asia;
 • The gap is wider for more recent male arrivals to Canada, and some evidence it narrows with additional years in Canada
 • Differences in SES, region of residence between immigrants and non-immigrants do not explain the immigrant cancer gap

• Canadian born visible minorities also have significantly lower cancer incidence, so advantage appears to persist into the second generation
Next steps

• Estimation of duration models for specific types of cancer

• Unobserved heterogeneity and robustness checks

• What are immigrant characteristics actually reflecting in terms of causes of cancer?
 • Link group-specific information on health behaviors from CCHS and other health survey datasets